EMBEDDED MODEL ERROR REPRESENTATION FOR BAYESIAN MODEL CALIBRATION
نویسندگان
چکیده
منابع مشابه
Debiasing Expert Overconfidence: A Bayesian Calibration Model
In a decision and risk analysis, experts may provide subjective probability distributions that encode their beliefs about future uncertain events. For continuous variables, experts often provide these judgments in the form of quantiles of the distribution (e.g., 5th, 50th, and 95th percentiles). Psychologists have shown, though, that such subjective distributions tend to be too narrow, represen...
متن کاملA robust bayesian random effects model for nonlinear calibration problems.
In the context of a bioassay or an immunoassay, calibration means fitting a curve, usually nonlinear, through the observations collected on a set of samples containing known concentrations of a target substance, and then using the fitted curve and observations collected on samples of interest to predict the concentrations of the target substance in these samples. Recent technological advances h...
متن کاملAn Embedded Bayesian Network Hidden Markov Model for Digital Forensics
In the paper we combine a Bayesian Network model for encoding forensic evidence during a given time interval with a Hidden Markov Model (EBN-HMM) for tracking and predicting the degree of criminal activity as it evolves over time. The model is evaluated with 500 randomly produced digital forensic scenarios and two specific forensic cases. The experimental results indicate that the model fits we...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Uncertainty Quantification
سال: 2019
ISSN: 2152-5080
DOI: 10.1615/int.j.uncertaintyquantification.2019027384